Graph-based Image Sharpening Filter Applied to Image Denoising
نویسندگان
چکیده
The present paper focuses on a new class of mesh filter for grayscale images, called grid smoothing filter. The framework presented considers an image as a sampling grid associated to a set of gray levels. Furthermore, the sampling grid is seen as mesh composed by vertices and edges, the number of vertices being equal to the number of pixels in the image. Embedding the mesh in a 2D Euclidian space, each vertex has two spatial coordinates and one attribute, the value of the gray level. Starting from the classical formulation of Laplacian mesh filtering, a novel objective function is introduced. The minimization of the objective function leads to new spatial coordinates for the vertices in the mesh. A reconstruction mechanism is then applied to the non-uniform mesh to reconstruct a grayscale image. Whereas the Laplacian mesh filter aims at smoothing an image, the grid smoothing tends at sharpening the edges of the image. The grid smoothing framework is applied to image enhancement in this paper.
منابع مشابه
An Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملBiomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected ...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کامل